Exercise 36

Problems 35 and 36 require some knowledge of chemical notation.
(a) Write the chemical equation $p \mathrm{C}_{3} \mathrm{H}_{4} \mathrm{O}_{3}+q \mathrm{O}_{2}=r \mathrm{CO}_{2}+s \mathrm{H}_{2} \mathrm{O}$ as an equation in ordered triples with unknown coefficients p, q, r, and s.
(b) Find the smallest positive integer solution for p, q, r, and s.
(c) Illustrate the solution by a vector diagram in space.

Solution

Let the ordered triplet $\left(x_{1}, x_{2}, x_{3}\right)$ represent the number of carbon, hydrogen, and oxygen atoms, respectively.

$$
\begin{gathered}
p \mathrm{C}_{3} \mathrm{H}_{4} \mathrm{O}_{3}+q \mathrm{O}_{2}=r \mathrm{CO}_{2}+s \mathrm{H}_{2} \mathrm{O} \\
p(3,4,3)+q(0,0,2)=r(1,0,2)+s(0,2,1) \\
(3 p, 4 p, 3 p)+(0,0,2 q)=(r, 0,2 r)+(0,2 s, s) \\
(3 p, 4 p, 3 p+2 q)=(r, 2 s, 2 r+s)
\end{gathered}
$$

Match the vector components.

$$
\begin{aligned}
3 p & =r \\
4 p & =2 s \\
3 p+2 q & =2 r+s
\end{aligned}
$$

Solving this system of equations yields

$$
p=\frac{s}{2} \quad \text { and } \quad q=\frac{5 s}{4} \quad \text { and } \quad r=\frac{3 s}{2} .
$$

In order for all the coefficients to be the smallest integers, set $s=4$. Then

$$
p=2 \quad \text { and } \quad q=5 \quad \text { and } \quad r=6 .
$$

